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Abstract: Achieving the twin objectives of increasing economic efficiency and lowering
environmental pollution in agricultural modernization requires regions to increase agri-
cultural energy efficiency. This study used the DEA-EBM model, an efficiency evaluation
tool, to measure and analyze the agricultural energy efficiency and input redundancy of
30 Chinese regions from 2000 to 2022. It also examined the factors that influence these
metrics. According to the findings, China’s agricultural energy efficiency varies greatly by
region, with the eastern region performing at its best and the western region performing at
a relatively low level. However, this gap is gradually closing. In the meantime, agricultural
energy efficiency shows clear spatial correlation, and the energy efficiency of different
regions and crop production is influenced by a combination of factors. Moreover, there is
a significant degree of land and energy redundancy, and the potential for energy savings
exhibits a declining and then rising tendency. In the course of advancing agricultural
modernization, this study offers municipalities a valuable reference base upon which to
develop unique strategies based on their unique qualities.

Keywords: agricultural production; DEA-EBM model; energy efficiency; redundancy ratio;
regional differences; influencing factors; spatial measurement model

1. Introduction

China uses less than 7% of its arable land to feed almost 22% of the world’s population.
At the same time, the “unsustainable” issue with China’s agricultural expansion has gained
more attention. China suggested early on that “mechanization is the fundamental way
out for agriculture”. This high-energy agricultural development model was successful
in fostering agricultural economic growth in the early years. However, as society and
the economy have changed, petroleum-based agriculture has proven to have numerous
drawbacks, and issues like rising costs, environmental contamination, and diminishing land
fertility have arisen [1]. As the level of agricultural mechanization increases, it is expected
that the amount of agricultural energy inputs will continue to increase [2], and in 2021,
China applied roughly 21% of the world’s fertilizer, and 7% of the world’s pesticides [3].
China continues to struggle with the conflict between rapid agricultural expansion and
ecological environment protection in the near term. The coercive effect of agricultural
development on the ecological environment is generally very harsh.

If China continues to take the old road of “oil agriculture”, it is bound to cause
irreversible damage to the rural ecological environment; if it reduces agricultural output, it
will affect the safety of the food supply. Therefore, it is crucial to use agricultural energy
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efficiently in order to increase agricultural economic efficiency and reduce environmental
damage. As a result, accurate measurement of agricultural energy efficiency, analysis
of input redundancy, energy-saving potential of China’s agricultural development, and
comprehensive study of factors affecting agricultural energy efficiency are crucial for
agricultural modernization and sustainable development.

Scholars, both domestically and internationally, have undertaken a wealth of research
in the realm of energy efficiency. Wang Qingyi [4] and ShiDan [5] classified energy efficiency
into two types of indicators: energy—economic efficiency and energy-technical efficiency.
Energy-technical efficiency is the ratio of energy inputs to energy outputs when energy
is used as a raw material and then processed and converted to create another form of
energy. Energy—economic efficiency is the ratio of energy inputs to final production results
when energy is used as fuel and power. Using annual net generation as the target output,
Toshiyuki et al. [6] assessed the energy-technical efficiency of coal-fired power plants
covered by the U.S. Clean Air Act (CAA). Even though this indication is more resilient
to price correlations and swings, it can still create two or more outputs from numerous
inputs, and it can be challenging to add up different outputs [7]. Thus, the metrics of
energy—economic efficiency are the main emphasis of this work. In this study, energy
efficiency refers to energy—economic efficiency, unless otherwise noted.

The approaches to gauge energy efficiency can generally be categorized into two
groups [8]: single-factor indicators and multi-factor indicators. Single-factor energy ef-
ficiency is calculated by directly comparing outputs with energy inputs; the production
volume is used to measure outputs. This method is commonly used for government
decision-making but has some obvious drawbacks. On the one hand, it fails to reflect
energy technology efficiency in the calculations [9]. On the flip side, it excessively em-
phasizes energy input while neglecting the substitution effects among other production
factors. Hu and Wang [10] introduced the concept of multi-factor energy efficiency, con-
sidering the capacity to substitute and combine various inputs in the production process.
This effectively addresses the limitations of single-factor energy efficiency indicators. Cur-
rently, scholars generally adopt methods to measure multi-factor energy efficiency, focusing
on national and regional levels or specific sectors such as agriculture [11] and industry.
Widely employed measurement techniques encompass non-parametric Data Envelopment
Analysis (DEA), parametric Stochastic Frontier Analysis (SFA), and models utilizing slack
variables (EBM).

As environmental issues resulting from energy utilization increasingly become a focus,
scholars have begun incorporating environmental pollution into efficiency measurement
frameworks. In terms of carbon emissions from agricultural energy consumption, Shi
Changliang [12], Li Guozhi, and Li Zongshi [13] comprehensively estimated the CO, emis-
sions from agricultural energy consumption in several Chinese provinces and discovered
that the emissions” magnitude has been gradually rising over time. In terms of assessing
the efficiency of agricultural CO, emissions and its influencing factors, taking into account
the problem of agricultural carbon emissions, Li et al. [14] used the EBM model to assess
China’s agricultural energy efficiency from 1995 to 2018 and came to the conclusion that
the regional differences in agricultural energy efficiency are steadily widening. By building
the ML function, Liu Qitao [15] assessed the agricultural carbon emission efficiency of
every province in China between 2000 and 2013. He discovered that there is a significant
disparity in the efficiency levels of various provinces, and that technological advancement,
industrial structure, and economic level, among other factors, have a significant influence
on its change.

In addition, sustainable agricultural development needs to focus on energy inputs.
Domestic researchers have carried out fewer studies on agricultural energy inputs and
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efficiency, and the majority of them directly use the primary industry energy terminal
consumption data expressed in the regional energy balance sheet to conduct analyses.
Only Niu Liangyun et al. [16] and Li Nan [17] have incorporated fertilizers, pesticides, and
other indirect energy sources into the accounting system of agricultural energy inputs in
their studies. Scholars primarily use the advanced level of international energy efficiency
as a benchmark when analyzing China’s potential for energy efficiency, and they use
international comparisons to assess China’s energy efficiency and potential for energy
savings. However, international comparisons of energy efficiency only offer a target value
for China’s energy efficiency improvement, and we are unable to calculate the potential
energy savings that China may have [5]. In 2014, Lin Bogiang [18] evaluated the energy-
saving potential of industrial energy component allocation from 2000 to 2009 using a
stochastic frontier production function model based on panel data from 37 sectors in
China’s industrial sector. However, agricultural research is lacking.

In the research on factors influencing agricultural energy efficiency, scholars gener-
ally believe that industrial agglomeration, industrial structure, urbanization, per capita
income, energy consumption structure, technological progress, and energy prices can affect
energy efficiency. In 2014, Wu et al. [19] concentrated on the industrial agglomeration
in 30 provinces in China spanning from 2000 to 2016. His findings indicated that indus-
trial agglomeration could enhance the enhancement of agricultural energy efficiency. Liu
et al. [20] scrutinized the outcomes of agricultural energy efficiency across major conti-
nents and suggested that economic structure, urbanization, and per capita income act as
impediments to agricultural energy efficiency. According to Zhou Hui et al. [21] and Ran
Qi-Ying et al. [22], agricultural energy efficiency is influenced by the rise in rural income,
advancements in agricultural technology, and the growth in the proportion of agricultural
output value. But, without taking geographical considerations into account, the majority of
the aforementioned studies used panel regression models or Tobit models. Indeed, there
is a clear spatial correlation in agricultural expansion because of the spatial mobility of
agricultural factors of production and the spread of technology [23].

Investigating energy efficiency in the agricultural sector is instrumental in advancing
the shift toward agricultural modernization and serves as a crucial reference for attaining
sustainable agricultural development. Therefore, there is an urgent need to strengthen
research in this field. However, the existing literature rarely incorporates non-expected
outputs, such as carbon dioxide, into output indicators during calculations [22]. More-
over, there is still a relative lack of research on the calculation of energy efficiency in the
production of different crops. In addition, geographical spatial factors can significantly
affect agricultural development [24]. The use of ordinary regression models may introduce
considerable bias, potentially affecting the accuracy of conclusions. Therefore, there is a
need for more comprehensive and accurate methods to conduct research in this area.

In light of the aforementioned, this essay attempts to respond to the following queries.
Initially: What are China’s agricultural energy efficiency levels by province and region?
What is the energy efficiency of China’s primary crops—soybeans, corn, and wheat? What
are the variations in efficiency between regions and provinces? Second: How much
of China’s labor, land, capital, and energy are redundant? Specifically, how much en-
ergy may be saved by using energy redundancy? Third: Are China’s various areas spa-
tially correlated? Considering geography, what are the elements influencing agricultural
energy efficiency?

2. Analysis of Energy Efficiency in Agriculture

This study concentrates on the agricultural domain, utilizing panel data encompassing
30 provinces (municipalities, autonomous regions) in China from 2000 to 2022. The EBM
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model is deployed to evaluate the energy efficiency of both the overall agricultural sector,
input redundancies, and energy-saving potentials, as well as the specific energy efficiencies
of wheat, corn, and soybean production. The research delves into their developmental
trajectories and regional disparities, examining influencing factors to achieve a more
nuanced comprehension of China’s agricultural energy efficiency.

2.1. Connotation and Measurement of Energy Efficiency in Agriculture

The DEA model employs linear programming to assess the efficiency of homogeneous
decision-making units without the need for preset weights, which is widely used in the
study of energy efficiency, but the traditional DEA model cannot solve the bias caused
by slack variables on efficiency measurement well and also cannot incorporate the non-
expected outputs into the measurement framework. Tone [25] set the slack variables in the
objective function and proposed the SBM model in 2004, which can effectively make up for
the lack of error caused by slack variables and also incorporate the non-expected outputs
into the whole framework. The specific formula can be found in Equation (1):
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In the above equation, i represents the number of input variables; x;, denotes the input
of the evaluated object; y,, denotes the desired output of the evaluated object; by, denotes
the non-expected output of the evaluated object; s;”, sF, and s, are the slack variables; Aj
is the weighting variable; and 68" denotes the optimal efficiency. When 6* = 1, it means
that the current production is valid; when 6* <1, it suggests that there is potential for
enhancement in the existing inputs and outputs. Avkiran and Rowlands [26] mentioned in
2008 that the non-radial SBM model considers slack variables, but there are still shortcom-
ings. Due to the inclusion of non-desired outputs in the model, there is a radial relationship
between resources, energy consumption, and non-desired outputs, which are indivisible,
while there is a non-radial relationship between inputs and outputs, such as capital, land,
etc., which are indeed divisible. Thus, SBM does not deal with the situation when vari-
ables are characterized by both radial and non-radial features. On this basis, Tone and
Tsutsui [27] introduced the EBM model in 2010, a hybrid model incorporating both radial
and non-radial functions, thereby addressing the limitations of conventional DEA and SBM
models. The EBM model, incorporating non-expected output can be found in Equation (2):
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Here, « and ¢ are radial partial planning parameters; ¢y, ¢, and ¢}, denote the parame-
ters linking radial and non-radial relaxation conditions; and w; ", w,, and wy denote the
weights of the ith input, the rth desired output, and the kth non-desired output, respectively.
The rest of the variables and the interpretation of the efficiency values are consistent with
the SBM model.

Based on the total factor productivity framework, in 2006, Hu and Wang [10] defined
the total factor energy efficiency index by using the DEA method and calculated the energy
efficiency through the ratio of “optimal energy input” and “actual energy input” on the
frontier curve, and this paper is based on their ideas to establish a model for measuring
agricultural energy efficiency. The model (3) is as follows:

LEL;,  TEIL

EE;; =1— -
vt AEL;; — AEI;,

)

where i stands for ith province (city or autonomous region); t for time; EE for energy
efficiency; AEI for actual energy inputs; LEI for lost energy inputs (i.e., the amount of
energy improvement or redundancy in energy inputs); and TEI for target energy inputs
(i.e., the ideal number of energy inputs needed to reach a specific level of outputs when
production technology is at its current level).
On this basis, input redundancy studies can be conducted as Equation (4):
R, = LEI;;

* AEI; @)

where the input redundancy ratio is denoted by R; ;. At the same time, the energy-saving
potential of agriculture can be analyzed based on the redundancy of energy inputs, which
is currently agreed in most of the literature on China’s energy saving potential as reflecting
the gap between the actual energy consumption and the target energy consumption. In this
paper, based on the theory of total factor energy efficiency, the energy saving potential is
measured and analyzed by the redundancy results of energy efficiency measurement.

In addition to addressing the problem of slack variables, the SBM and EBM models
incorporate carbon emissions from undesired outputs into the framework for measuring
efficiency. In contrast to the SBM model, the EBM model takes into account scenarios where
variables exhibit both radial and non-radial characteristics, thereby avoiding result biases.
Consequently, considering that agricultural energy efficiency is closely linked to carbon
emissions, the EBM model is chosen to evaluate agricultural energy efficiency in China,
along with the energy efficiency of wheat, corn, and soybean production regions.

It should be noted that, the panel data of 30 regions from 2000 to 2022 used in this
study demonstrate that, from a time span perspective, the direction of the evolution of
agricultural production technology in each region shows a certain degree of convergence
in the long-term development, despite the notable differences in the level of agricultural
development among regions [28]. At the same time, a certain level of uniformity in
agricultural production technology has been achieved in some regions as a result of China’s
extensive implementation of a number of national technical promotion and policy support
initiatives in the agricultural sector. Furthermore, while regional variations exist in the
magnitude of factor inputs, the inputs of agricultural production (land, labor, capital, and
energy) share similarities in terms of technology use and production factor aims, fulfilling
the homogeneity premise of DEA model.

2.2. Description of Indicators for Measuring Energy Efficiency in Agriculture

Based on existing and relevant studies on energy efficiency [29,30] and data availability,
this study utilizes panel data spanning the years 2000 to 2022 from 30 provinces (munici-
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palities and autonomous regions) in China, drawing insights from previous scholarly work.
Input factors considered in the analysis include labor, energy, capital, and land. Desired
outputs encompass the total output value of agriculture, forestry, animal husbandry, and
fishery, while non-desired outputs consist of total agricultural CO, emissions. All indica-
tors are standardized, with the reference year being 2000. Specific indicators are shown
in Table 1.

Table 1. Input-output indicator system for energy efficiency in agriculture.

Realm Norm Calculation Method Unit
. Number of persons employed in
Labor input the primary sector by province per ten thousand people
Land input Crop sown area thousand hectares
Capital Investment Per};(ftiaﬁrjc(e?ti)rgf) T_e;th()d hundred million CNY
National

Energy converted to standard coal

and totaled by province Tons of standard coal

Energy inputs

Desired outputs

Gross output value of agriculture,
forestry, Livestock and fisheries at
2000 in constant prices

hundred million CNY

Undesired outputs

Carbon dioxide emissions

) ten thousand tons
from agriculture

Wheat or corn or
soybean production

Sown area as a proportion of total

Labor input cultivated area converted to per ten thousand people
agricultural labor inputs
Land input Sown area Million acres

Capital Investment

Sown area as a proportion of total
cultivated area converted to
agricultural capital inputs

hundred million CNY

Sown area as a proportion of total
planted area converted to
agricultural energy inputs

ten thousand tons of

Energy inputs standard coal

Desired outputs

Yield of main product per acre x
sown area

ten thousand tons

Undesired outputs

Proportion of sown area to total
cultivated area converted to
non-expected output of agriculture

ten thousand tons

The following parameters were specified:
(1) Input variables

Labor Input: The measurement of labor input indicators in this study is based on the
employment figures in the primary sector.

Energy Input: This paper classifies energy input into two categories—direct energy
input and indirect energy input [31]. As there are insufficient data available on the direct
energy consumption in agriculture for individual provinces, this study tackles the challenge
of the unavailability of specific data on direct energy consumption in agriculture for
each province by introducing a standardization process for major agricultural energy
sources across diverse regions. The principal direct energy inputs in Chinese agricultural
production encompass coal, diesel, gasoline, and electricity, with their conversion rates
based on the proportion of energy input in the primary industry within each province.
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Beyond these direct inputs, agriculture involves additional indirect energy inputs like
agricultural films, fertilizers, pesticides, etc. For the purposes of this study, the consumption
of agricultural films, pesticides, and fertilizers in each province from 2000 to 2022 has been
converted into standard coal consumption, serving as an indicator for indirect energy input.
The General Principles for the Comprehensive Calculation of Energy Consumption, Oak
Ridge National Laboratory and the Intergovernmental Panel on Climate Change (IPCC)
are the sources of coal conversion factors.
The calculation can be found in Equation (5):

4
E=1) ei*a ()
i=1

where E denotes total converted agricultural energy consumption and e; represents the
physical volume of agricultural energy consumption in category i. 4; denotes the discounted
standard coal coefficient for agricultural energy in category i. The conversion factors are
shown Table Al.

Capital Inputs: The correlation between agricultural machinery and agricultural
capital is relatively weak [32]. Using agricultural machinery input or fixed agricultural
capital as the stock of agricultural capital may not accurately reflect the actual level of
capital stock in each region [33]. Therefore, this paper adopts the perpetual inventory
method to estimate the stock of agricultural capital. The basic formula can be found in
Equation (6):

Ki =K 1(1=90)+ 1 (6)

Upon deformation, the above equation can be found in Equation (7):

Ki = Ki—1+ 1y — Dy ()

where K; and K;_; denote the agricultural capital stock in period t and period ¢ - 1.
This paper follows the approach of Hall and Jones [34], where ¢ represents the capital
depreciation rate, with a value of 5.42% [33]. I; represents the agricultural capital investment
in the t-th period, following the practice of Li et al. [33] and Xu et al. [35], using the formation
of fixed agricultural capital as the indicator. D; denotes depreciation in period. The
calculation of agricultural capital depreciation is conducted using the ratio of investment in
agricultural fixed assets, the proportion of depreciation of agricultural fixed assets to total
social fixed asset investment, and a depreciation rate of 5.42%. The results obtained from
these methods show minimal differences [33]. Therefore, this study employs the amount of
depreciation of agricultural fixed assets as an indicator of agricultural capital depreciation.
The calculation method involves multiplying the ratio of investment in agricultural fixed
assets by the total depreciation of all fixed assets in society.

Land Inputs: Drawing on scholarly research, this paper uses the area sown to crops to
measure land inputs.

(2) Desired output

In this study, the constant-price gross output value of agriculture, forestry, livestock,
and fisheries for the base year of 2000 are used as the target output. Additionally, the
production of wheat, maize, and soybeans for the current year is considered as the desired
output. Additionally, the desired output for wheat, corn, and soybeans is the total produc-
tion for the year, which is expressed as the product of the yield of the main product per
acre and the area sown.

(3) Undesired outputs
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This paper draws on the research of Li [17] and selects the agricultural energy carbon
dioxide emissions as the undesired output indicator.

This paper selects 30 provinces (municipalities and autonomous regions) across the
country. When calculating the energy efficiency of wheat, corn, and soybean production,
the main producing provinces of each crop are chosen as the study scope, including
14 provinces for wheat production, 20 provinces for corn production, and 11 provinces for
soybean production. The specific regions are listed in Table A2 in Appendix A.

The primary data sources for the computation include the China Statistical Yearbook,
China Rural Statistical Yearbook, China Energy Statistical Yearbook, regional statistical
yearbooks, and National Compendium of Agricultural Product Cost and Benefit Informa-
tion. The energy input coefficients in terms of standard coal are based on the General Rules
for Calculating Comprehensive Energy Consumption. To calculate undesired outputs, this
study adopts the methodology of the IPCC, while the carbon emission coefficients are
referenced from the General Rules for Calculating Comprehensive Energy Consumption,
the Intergovernmental Panel on Climate Change (IPCC) and data provided by the Oak
Ridge National Laboratory of the United States.

2.3. Analysis of Overall National Agricultural Energy Efficiency

The agricultural energy efficiency values in different years for various regions are
presented in Table 2. High-efficiency regions such as Beijing, Shanghai, Fujian, Hainan, and
Sichuan consistently maintain high levels of agricultural energy efficiency in multiple years.
Some regions, such as Anhui, Guizhou, and Tianjin, show significant annual fluctuations,
possibly influenced by local natural disasters and other factors. Relatively inefficient
regions, including Shanxi, Qinghai, and Ningxia, indicate a need for enhanced management
and improvement in agricultural energy utilization.

Figure 1 illustrates the variations in agricultural energy efficiency nationwide and
in the four primary regions from 2000 to 2022. In the figure, energy efficiency in the east
and northeast regions consistently hovers around 0.85 and 0.7, respectively, exhibiting a
stable overall change trend. Conversely, the central regions experience more pronounced
fluctuations, and the northeastern region demonstrates a fluctuating decline. The three
major regions, excluding the eastern region, contribute to dragging down the national
average, necessitating proactive adjustments in the structure of agricultural production
inputs to enhance current energy utilization practices.

Figure 2 uses Shanxi and Fujian as examples to illustrate the disparities between
high-efficiency and low-efficiency regions. Figure 2 illustrates that, while Shanxi Province’s
efficiency value was below 0.5 from 2000 to 2009 and has since improved, it only varies
up and down by 0.5. In contrast, Fujian Province’s agricultural energy efficiency has
been maintained at a high level for a long time, reaching 1. Three viewpoints are used
to further investigate the causes of the discrepancies: geography, crop choice, and policy
requirements. First, Shanxi has a dry environment with significant land desertification,
whereas Fujian has a warm, humid climate, with mountains and hills making up 80% of the
province’s territory, and abundant water resources. Second, when it comes to crop selection,
Shanxi is dominated by traditional grain crops like maize and wheat and lags behind in
terms of machinery levels, whereas Fujian is dominated by tropical fruits like lychee and
longan, tea, and other high-value crops; it also encourages facility-based agriculture and
three-dimensional planting patterns and improves energy efficiency through precision
irrigation and biological control. Last but not least, in terms of policy support, Shanxi
is dominated by a coal economy, agricultural policies have long been marginalized, and
agricultural mechanization subsidies are not widely available, whereas Fujian improves
energy efficiency through eco-subsidy and carbon-constraint policies.
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Table 2. Energy efficiency values and averages by region for major years.

Area 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 Average
Beijing 1.00 1.00 1.00 100 100 1.00 1.00 1.00 1.00 1.00 1.00 0.96
Tianjin 0.91 0.88 1.00 093 073 068 065 0.68 0.66 0.50 0.57 0.74
Hebei 0.57 0.61 076 076 080 085 084 0.86 0.79 0.77 0.80 0.76
Shanghai 0.93 0.81 095 1.00 100 1.00 100 1.00 1.00 1.00 1.00 0.93
Jiangsu 0.63 0.69 086 086 091 1.00 100 095 0.93 0.91 0.83 0.87
Zhejiang 0.77 0.83 085 086 082 091 094 097 1.00 1.00 1.00 0.92
Fujian 1.00 1.00 1.00 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Shandong 0.57 0.59 071 069 077 080 077 081 0.72 0.74 0.71 0.72
Guangdong 0.81 0.83 082 084 081 078 073 072 0.71 0.69 0.73 0.76
Hainan 1.00 1.00 1.00 100 1.00 100 100 1.00 1.00 1.00 1.00 1.00
Shanxi 0.30 0.31 038 038 037 053 050 050 0.47 0.48 0.55 0.43
Anhui 0.73 0.75 082 073 087 092 100 1.00 0.90 0.84 0.92 0.84
Jiangxi 0.72 0.67 069 065 079 080 081 0.84 0.84 0.83 0.85 0.77
Henan 0.68 0.70 079 069 073 081 074 075 0.68 0.67 0.72 0.71
Hubei 0.48 0.50 061 057 079 085 089 093 0.91 0.85 0.90 0.75
Hunan 0.66 0.66 082 075 100 1.00 097 094 0.91 0.78 1.00 0.85
Inner Mongolia  0.71 0.64 074 070 067 058 054 052 0.47 0.54 0.54 0.61
Guangxi 0.70 0.69 083 080 1.00 08 078 0.81 0.80 0.87 0.83 0.81
Chongqing 0.41 0.50 061 063 062 061 062 0.63 0.65 0.65 0.70 0.60
Sichuan 0.60 0.65 086 088 1.00 1.00 100 1.00 1.00 1.00 1.00 0.90
Guizhou 0.52 0.47 049 049 063 069 077 1.00 1.00 1.00 0.88 0.72
Yunnan 0.55 0.56 061 061 072 067 071 070 0.59 0.58 0.62 0.63
Shaanxi 0.36 0.38 043 043 053 057 057 0.58 0.52 0.53 0.58 0.50
Gansu 0.48 0.44 049 048 061 069 071 075 0.65 0.61 0.59 0.60
Qinghai 0.33 0.38 051 051 054 057 051 049 0.39 0.42 0.44 0.47
Ningxia 0.31 0.33 044 045 051 048 046 046 0.40 0.45 0.46 0.44
Xinjiang 0.72 0.75 091 082 08 1.00 085 0.83 0.70 0.78 0.74 0.82
Liaoning 0.83 0.87 09 088 084 083 076 0.68 0.69 0.68 0.66 0.77
Jilin 0.63 0.66 082 078 077 067 068 0.66 0.57 0.48 0.55 0.65
Heilongjiang 0.46 0.51 065 063 078 075 088 1.00 0.90 1.00 0.91 0.80

; —@—— National L East A Middle —4—— West ——A—— Northeast

Agricultural energy efficiency
0.40
1

0.30
|

0.10
1

o
= T T T T T T T T T T T
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

Year

Figure 1. Changes in agricultural energy efficiency at the national level and in the four regions,
2000-2022.
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Figure 2. Comparison of agricultural energy efficiency values in Fujian and Shanxi, 2000-2022.

2.4. Analysis of Agricultural Input Redundancy

The input redundancy ratio can be calculated according to Equation (4) (see Table A3
for specific data). Land has the largest redundancy ratio, reaching 20.79%. Moreover,
China’s agriculture is comparatively more efficient in the distribution of manpower and
capital resources, as seen by the lower labor redundancy ratio and capital redundancy ratio,
which stand at 6.09% and 3.19%, respectively.

As shown in Figure 3, although the degree of redundancy varies widely, the rankings
of redundancy rates in China’s east, center, west, and northeast is consistent with the
overall ranking. Notably, the labor redundancy rate is relatively low at 6.09% on average
for China. Especially in the northeast, the labor redundancy rate is close to zero. From a
technical point of view, this is mainly due to the high level of agricultural mechanization in
the northeast. The high level of mechanization reduces the reliance on traditional labor,
making it possible to accurately match labor inputs with actual demand, thus avoiding
labor redundancy. From the management level, the intensive agricultural production model
implemented in the northeast has optimized the efficiency of resource allocation. Even
in the face of declining population and tight supply of agricultural labor, it has been able
to efficiently integrate resources and maintain the labor redundancy rate at a level close
to zero.

The central region exhibits the lowest capital redundancy rate (0.32%), attributed to
an improved investment climate, industrial diversification, and efficient resource alloca-
tion. The eastern area has the lowest land redundancy rate (9.88%) because of its highly
developed economy, cutting-edge agricultural technology, and management strategies that
optimize the use of land for agricultural production. The northeast and western areas
exhibit higher rates of energy redundancy. Despite having a high degree of technological
agricultural mechanization and a high intensity of agricultural energy inputs, the northeast
region has the highest energy redundancy rate (14.95%). This may be due to the large
scale of agricultural production in the northeast, where diseconomies of scale lead to
discrepancies between energy inputs and outputs.
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Figure 3. The labor, land, capital, and energy redundancy rates of China’s four major regions from
2000 to 2022.

The high level of energy redundancy in the western region stems from the limita-
tions imposed by its natural conditions and the difficulty of implementing agricultural
technologies. The western region is dominated by mountains and plateaus, with rich
climate types, resulting in small plots of land and scattered farmland, making it difficult
to apply large-scale agricultural machinery and equipment, and farmers are forced to rely
on small machinery to repeat farming many times, with a significant increase in energy
consumption per unit area; in addition, the western region is ecologically fragile, with weak
infrastructure, and the cost and difficulty of utilizing high-tech methods results in the low
level of agricultural technology and the high level of energy consumption of agriculture.

In Figure 4, according to the average input redundancy for each province, the agri-
cultural energy efficiency is higher and the redundancy of labor, land, capital, and energy
inputs is lower in Fujian, Hubei, Hainan, and Shaanxi Provinces than the national average.
Natural limitations, technical lags, and the necessity for ecological protection all contribute
to Shaanxi Province’s low agricultural energy efficiency and low input redundancy. Shaanxi
Province’s vast north—south expanse, stark natural condition variations, and inadequate
infrastructure compel agriculture to embrace a conservative approach of “low inputs and
low redundancy”. At the same time, Shaanxi Province is responsible for ecological barrier
functions including protecting Qinling Mountain and conserving the soil and water of the
Yellow River. Agricultural policies must balance ecology and productivity, which further
limits the use of high-energy technologies. Consequently, despite the low level of agricul-
tural inputs, efficiency is limited by the infrastructure and degree of technology application.
Beijing, Hebei, Shanxi, Zhejiang, Jiangxi, Shandong, Hunan, and Guangxi provinces have
only one input redundancy higher than the national average, and their agricultural energy
efficiency is high. Despite high agricultural energy efficiency in provinces such as Anhui,
Henan, Gansu, and Xinjiang, the agricultural structure still needs to be adjusted to reduce
redundancy rates. These provinces have an average redundancy rate of 0 percent for some
inputs, but there is still a need to further balance the efficiency of the use of different inputs
in order to achieve higher quality development.
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Figure 4. Average input redundancy of agricultural inputs in 30 provinces of China from 2000 to 2022.

Generally speaking, in terms of labor inputs, we should take a cue from the northeast
region’s experience, aggressively advance technological agriculture mechanization, and
apply intense management while bolstering skill development to increase labor efficiency.
Regarding land input, it is necessary to enhance the degree of land conservation and intense
usage, implement creative land-saving models, optimize land use structure, and clarify
land use planning. In terms of capital investment, the agricultural investment environment
should be optimized, social capital investment should be directed, industrial policies should
be strengthened, and financial support should be reinforced. For energy input redundancy,
energy management practices should be strengthened to avoid energy redundancy due to
diseconomies of scale while expanding production.

2.5. Analysis of Agricultural Energy-Saving Potential

One essential strategic resource for economic growth is energy. China’s fast economic
expansion since it’s economic reform and opening up has increased the demand for energy,
but excessive use has resulted in progressively severe shortages and environmental issues.
Thus, scientific evaluation of energy-saving potential is especially crucial.

The energy-saving potential of China’s agriculture between 2000 and 2022 is depicted
in Figure 5. From 2000 to 2022, China’s agricultural sector’s capacity to save energy ex-
hibits a trend of initially declining and then rising. The first phase of China’s agricultural
modernization process is the years 2000-2003. The state increased policy support for agri-
cultural mechanization and energy-saving potential decreased from 20.37 million tons to
11.62 million tons, a decrease of 43%; this is related to the technological increase in the level
of agricultural mechanization and the initial improvement in the management of efficiency
of energy use. Energy-saving potential rose to 16.39 million tons in 2003—2005, probably due
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to the expansion of agriculture at the management level and the increase in energy demand,
which led to the intensification of the phenomenon of energy waste. In 2005-2010 there was
a decline, and in 2010, out of all the years between 2000 and 2022, China’s energy-saving
potential reached the lowest value, at 3.81 million tons, mainly because, during this period,
the country introduced a series of policies to support agricultural mechanization, energy
saving, and emission reduction, causing agricultural science and technology innovation
to speed up the gradual promotion of energy-saving technologies such as high-efficiency
irrigation, precision fertilizer application, etc. Between 2010 and 2020, the energy-saving
potential rose overall, reflecting the accelerated process of agricultural modernization and
increased energy consumption, but the energy-saving potential was still not exploited as
fully as it could have been.
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Figure 5. Energy-saving potential of China’s agriculture from 2000 to 2022.

China’s agricultural energy use and potential for energy savings vary significantly
by province in Figure 6. The wide discrepancies between the targeted and actual energy
consumption in the provinces of Xinjiang, Inner Mongolia, Henan, and Anhui—all of
which surpass 900,000 tons—indicate that there is a significant amount of energy waste
in agricultural output in these areas. Large agricultural provinces or resource-intensive
areas with extensive agricultural production make up the majority of these provinces;
nevertheless, poor energy management or inadequate use of technology results in low
energy utilization efficiency. In contrast, the provinces of Fujian, Hainan, and Qinghai,
on the other hand, have the lowest actual energy consumption in the nation, with an
energy-saving potential of 0, which may be due to their smaller agricultural production
scales, better climates, or widespread use of energy-saving technologies.

From a national perspective, the average energy consumption in China is 4.03 million
tons, the average target energy consumption is 3.62 million tons, and the average energy-
saving potential is 400,000 tons. Eleven provinces have energy-saving potential that is
higher than the national average, suggesting that there is still some energy waste in China’s
agriculture overall.
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Figure 6. Average actual energy consumption and optimal energy consumption of agriculture in each

province and municipality from 2000 to 2022.

2.6. Analysis of Energy Efficiency in Wheat, Corn, and Soybean Production

The energy efficiency values of wheat production in the main years for wheat-
producing regions are presented in Figure 7. Eastern provinces such as Hebei and Shandong
exhibit relatively high energy efficiency in wheat production in most years, showing a
trend of small fluctuations; the central province of Henan has maintained a high level
in most years. Western provinces like Shaanxi also demonstrate relatively stable energy
efficiency in wheat production. In contrast, Hubei, Ningxia, and Xinjiang show significant
fluctuations, with energy efficiency values varying between different years. These findings
indicate variations in the energy utilization dynamics of wheat production across different
regions, potentially shaped by factors like climate, technology, and policies. A thorough
examination of the factors driving changes in wheat production energy efficiency within
these provinces will aid in formulating more precise strategies and resource management
plans for wheat agriculture.

In Figure 8, the energy efficiency values of corn production in key years in corn-
producing regions are presented. Eastern provinces such as Hebei and Shandong show a
relatively stable trend. Meanwhile, western provinces such as Inner Mongolia, Guizhou,
Ningxia, Xinjiang, and those in the northeast, including Jilin and Heilongjiang, also demon-
strate relatively stable production energy efficiency with high average levels. In contrast,
central provinces such as Hubei and western provinces such as Guangxi show significant
fluctuations in corn production energy efficiency, probably affected by different factors
such as climatic conditions, technological levels, and management practices.

Figure 9 illustrates the energy efficiency metrics for soybean production in regions
specializing in soybean cultivation. Areas like Shandong, Jilin, and Heilongjiang exhibit
comparatively high energy efficiency, boasting mean values surpassing 0.9. In contrast,
Inner Shanxi and Shaanxi have lower efficiency values. Shanxi and Shaanxi experienced

significant fluctuations in energy efficiency values, mainly due to their relatively stable
inputs, but the significant fluctuations in output caused by changes in planting areas
affected the performance of efficiency values.
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Figure 7. The changes in agricultural energy efficiency in each province within main wheat producing
areas in key years.
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Figure 8. The changes in agricultural energy efficiency in each province within main corn producing
areas in key years.

Overall, both maize and soybeans have an average agricultural energy efficiency
of 0.75, but wheat has a slightly lower average of 0.59. While energy efficiency has
usually increased in areas that produce corn and soybeans between 2000 and 2022, en-
ergy efficiency in wheat shows a fluctuating decline, which may be related to changes
in machinery inputs in wheat production. Figure 10 plots the ratio of machinery in-
puts for wheat in 2000-2022; the ratio of machinery inputs is denoted by machinery
input costs/(labor input costs + machinery input costs), and a larger value of the ratio,
means that more machinery is used. It is obvious from Figure 10 that the proportion
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of machinery inputs for wheat remained relatively stable from 2000 to 2005, while it in-
creased year by year between 2005 and 2010, reaching a peak of 0.38 in 2008, and then
gradually declined and basically stabilized at about 0.30. This trend of increasing and then
decreasing before stabilizing may be one of the reasons for the fluctuating decline in the
energy efficiency value of wheat.
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Figure 9. The changes in agricultural energy efficiency in each province within main soybean
producing areas in key years.
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Figure 10. The changes in the machinery input ratio of wheat production across China, 2000-2022.

2.7. Analysis of Regional Differences in Agricultural Energy Efficiency

The Thiel index is a commonly used metric to assess regional imbalances because of its
capacity to break down both intra- and inter-regional inequalities [36]. This study examines
intra- and inter-regional disparities in agricultural energy efficiency across China’s four
main regions by employing the Thiel index. The Thiel index and decomposition formula
can be found in Equation (8):
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In Equation (8), T, and T}, denote the within-region variance Theil index and the
between-region variance Theil index, respectively. 1, indicates the number of provinces
in one of the four regions, N represents the total count of provinces within the country,
ey denotes the average agricultural energy efficiency in the region, ¢,; denotes the en-
ergy efficiency of province i in the region, and E denotes national average agricultural
energy efficiency.

Figure 11 demonstrates the differences in agricultural energy efficiency in China.
First of all, from the total disparities, there are more obvious fluctuations in the overall
differences among the four regions. However, looking at the overall trend, the Theil index
decreased from 0.051 in 2000 to 0.028 in 2022, showing a trend of narrowing the overall gap.
Based on the breakdown findings, the tendency of within-region Theil index is the same
as that of overall index. The Theil index for inter-regional differences in the four major
regions decreased from 0.020 in 2000 to 0.005 in 2022, and the inter-regional differences
continued to shrink.
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Figure 11. The Thiel index of agricultural energy efficiency in China, 2000-2022.

Specifically, between 2000 and 2009, the Thiel index decreased from 0.051 to 0.018,
indicating a further narrowing of the overall disparity. This is mostly because Central Doc-
ument No. 1 has been focusing on the “Three Rural Issues” since 2004 and the agricultural
tax was completely abolished in 2006, the policy of agricultural production subsidies that
followed helped to reduce the regional development gap and effectively stimulate the input
of agricultural factors in different regions. The central government’s 2012 proposal to speed
up agricultural science and technology innovation and increase the level of agricultural
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modernization may have contributed to the fluctuating upward trend in the difference
between 2009 and 2016; the uneven development of the level of mechanization in different
regions due to natural endowments and the challenge of implementing technology has
widened the gap. From 2016 to 2022, China’s agricultural development is significantly
influenced by the country’s emphasis on greening, particularly with the implementation
of the Three-Year Action Plan for Winning the Battle for the Blue Sky in 2018 and the goal
of “Carbon Peak and Carbon Neutrality” in 2021; environmental protection policies were
tightened, which resulted in the formation of synergistic development of various regions
in the application of green technology, ecological compensation mechanisms, etc., and
narrowed the gap overall. In 2020, the gap was reduced overall. The years 2021 and 2022
will see the Thiel index drop below 0.030.

In this context, the variations among provinces in the eastern region are the least
pronounced, potentially attributed to its comparatively advanced development, elevated
technological standards, and more equitable agricultural energy efficiency. The variations
among provinces in the western region are the most pronounced. This is mostly caused by
the unequal distribution of resources and economic development in the western region; arid
regions in the northwest, like Gansu, are limited by nature and have poor infrastructure,
while Sichuan has better agricultural conditions and higher energy efficiency. However,
between 2000 and 2022, the western region’s agricultural energy efficiency gap shrank
the fastest, from 0.041 to 0.015. Strong national policies that have recently encouraged
agricultural development in the western region have led to a steady optimization of the
agrarian structure. Therefore, to address variations among major regions, enhancing
communication in terms of factors and technology, boosting support for less efficient
regions, and aiding them in enhancing agricultural energy efficiency are imperative to
mitigate overall disparities.

3. Analysis of Influencing Factors of Agricultural Energy Efficiency
in China

Evaluating the influencing factors of agricultural energy efficiency helps us understand
why there are temporal and spatial differences in agricultural energy efficiency. Given the
spatial correlation of agricultural energy efficiency, we use spatial models to evaluate the
influencing factors.

3.1. Spatial Autocorrelation Analysis of Agricultural Energy Efficiency in China

Everything exhibits a certain degree of correlation, and this correlation is inversely
proportional to the distance; the closer the distance, the stronger the correlation [37]. This
paper employs the Moran index to examine the spatial correlation of China’s agricultural
development. Moran’s index can be divided into global Moran’s index and local Moran’s
index. The formula for the global Moran index can be found in Equation (9):

Yit Y Wi (X; — X) (X; — X)

Moran’l = : —
T X Wij # 5 2 (Xi — X)

©)

The formula for the local Moran’s index, which expresses the spatial correlation of
different regions, can be found in Equation (10):
X;—X Z -
== L Wi(X; - X) (10)
L (X - X)"jA

In the above equation, n denotes the number of provinces, X; denotes the agricultural
energy efficiency index for province I, X; denotes the agricultural energy efficiency index
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in province j, X is the national average of energy efficiency, and W;; represents the spatial
distance weighting matrix of neighboring areas in province i and province j. This matrix is
the inverse of the geographic distance between provinces in terms of latitude and longitude.

3.1.1. Global Autocorrelation

The global Moran index calculated according to the above formula is shown in
Figure 12, and it is consistently positive across all years, except for 2021, where signif-
icance tests were conducted for the remaining years. This indicates that there is a significant
spatial autocorrelation in agricultural energy efficiency in China. Moreover, the Moran’s I
index of agricultural energy efficiency showed considerable fluctuation between 2000 and
2022; changes in policy direction and the broad adoption of agricultural technologies may
cause regionally autocorrelated swings in agricultural energy efficiency.
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Figure 12. Global Moran index, 2000-2022.

3.1.2. Local Autocorrelation

A local autocorrelation test can depict the efficiency differences among specific regions.
Due to spatial limitations, this article presents the spatial distribution tables of the local
Moran index for 2005, 2010, 2015, and 2020, as shown in Figure 13.

H-H Regions: Predominantly in China’s eastern coastal areas, characterized by favor-
able natural conditions, strong economic foundations, and advanced technology. Frequent
factor exchanges stimulate economic development, contributing to improved agricultural
energy efficiency.

L-L Regions: Mainly in the northern and northeastern parts of the country, reflecting a
reliance on a primitive agricultural model and suboptimal factor inputs.

H-L and L-H Regions: Found in the central and southwestern regions, indicating
significant differences in agricultural energy efficiency between neighboring areas. The
possible reasons for this are that regions with high energy efficiency have a limited driving
effect on neighboring low-efficiency regions, or that low-efficiency regions are unable to
receive radiation from high-efficiency regions, resulting in slow efficiency growth.
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Figure 13. Localized Moran index distribution.

3.2. Analysis of Factors Affecting Energy Efficiency in Agriculture

Provincial agricultural energy efficiency may exhibit correlation, influenced by factor
mobility among regions. The efficiency of a province is likely influenced by its neighboring
provinces, highlighting the significance of considering spatial interactions in the model.

Spatial econometric models serve as essential tools for analyzing spatial data, primarily
encompassing three categories: the Spatial Error Model (SEM), the Spatial Lag Model (SAR),
and the Spatial Durbin Model (SDM). This paper considers the possible spatial correlation
between the variables and decides on the use of the Spatial Durbin model proposed by [38]
to analyze the combination of the two. The formula can be found in Equation (11):

n

Ei = 2 ij ]t+“xit+/32 Wijxje + ui + e + €3t (11)
—
]—1 j=1

Wi; is the spatial geographic distance weight matrix; E;; and Ej; denote agricultural
energy efficiency in provinces i and j; x;; and x;j; denote factors affecting agricultural energy
efficiency in provinces i and j; p is a spatial coefficient reflecting the spatial interaction
of agricultural energy efficiency; S denotes the coefficient of the degree of influence of
neighboring provinces’ influencing factors on the province’s energy efficiency; and u;, vy,
and ¢;; denote individual effects, time effects, and residuals, respectively.

As shown in Table 3, following the model selection procedure, the initial determination
is whether to opt for a fixed-effects model or a random-effects model. Based on the results
of the Hausman test, the fixed-effects model is chosen. Furthermore, according to the
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preliminary Likelihood Ratio (LR) test outcomes, this study ultimately selects a two-way

fixed-effects model for subsequent analysis.

Table 3. Tests for the Spatial Durbin Model.

Test Test Statistic Conclusion
Chi2(8) = 352.65 .
Hausman test Prob > chi2 = 0.0000 Select fixed effects model

Individual fixed effects

LR chi2(8) = 116.26
Prob > chi2 = 0.0000
Log-likelihood = 555.2561

Time fixed effects

- Select two-way fixed effects model
LR chi2(8) = 423.72

Prob > chi2 = 0.0000
Log-likelihood = 767.1155

SDM cannot degenerate to SAR

LR chi2(8) = 105.64

Prob > chi? = 0.0000 SDM rejects degeneration to SAR

SDM cannot degenerate to SEM

LR chi2(8) = 101.27

Prob > chi? = 0.0000 SDM rejects degeneration to SEM

Subsequently, the Spatial Durbin Model (SDM) can degenerate into both the Spatial

Error Model (SEM) and the Spatial Lag Model (SAR), necessitating additional LR tests. The
results of the LR tests indicate that the SDM rejects degeneration into both the SAR and
SEM, thus validating the appropriateness of employing the SDM for estimation.

3.2.1. Description of Indicators of Factors Affecting Energy Efficiency in Agriculture

Regarding the analysis of factors affecting energy efficiency in agriculture, the indica-

tors selected in this paper are shown in Table 4.

@

@

®)

4)

©)

These variables and their relevance are explained in further detail below:

Farmers’ income levels: Farmers’ incomes will affect the economic behavior of farmers,
higher income will help farmers to improve production facilities, rational allocation
of inputs of production materials [39].

Agricultural production structure: The agricultural sector includes planting, animal
husbandry, fisheries, and forestry, and there are more obvious differences in produc-
tion methods and factor allocation between industries and their development has
different energy requirements. Hence, this study opts to utilize the configuration of
animal husbandry and the internal composition of cultivation as indicators reflecting
the makeup of agricultural production.

Rural human capital level: Regions with higher human capital levels are inclined
to integrate advanced technologies into agricultural production, resulting in en-
hanced efficiency in both production processes and the utilization of agricultural
energy. This study employs the average years of education for the rural labor force as
an indicator [40].

Financial support for agriculture: Government funding can assist farmers in im-
proving production equipment, optimizing agricultural production conditions, and
thereby enhancing overall agricultural energy efficiency [41,42].

Degree of agricultural price incentives: If the gap between the price of agricultural
products and the price of means of production is too large, it will greatly affect the
rationality of the allocation of resources by farmers, resulting in the reduction in
agricultural energy efficiency. However, farmers will also adjust their input structure
in accordance with price changes, optimizing production to enhance agricultural
energy efficiency.
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(6) Degree of agricultural agglomeration: This paper utilizes the entropy of agricul-
tural location in each province as an indicator of the degree of agricultural industry
agglomeration. The specific formula can be found in Equation (12).

Qr
NQ; = (S;i) (12)
Q

NQ; denotes the degree of agricultural industry agglomeration in province i, Q}
denotes the gross value of agricultural production in province i, Q; denotes the gross
regional product of province i, Q" denotes gross national agricultural output, and Q
denotes gross national product.

(7) Machinery input ratio: Machinery costs incurred during crop cultivation also affect
agricultural energy efficiency, so this paper employs the ratio of machinery input costs
to labor input and machinery input costs as measures for the machinery input ratio.

(8) Meteorological disasters: Climate change directly impacts agricultural output. To
mitigate the effects of meteorological disasters, farmers often increase the use of
agricultural machinery and other production means. This paper draws on the work
of Wu et al. [43], utilizing the ratio of the affected crop area to the total sown area as
an indicator of meteorological disasters.

Table 4. Factors influencing agricultural energy efficiency in China.

Scope Variables Symbols Measurement Method
Level of farmers’ income INC Per capita net income of farmers with constant 2000 prices
Internal structure of the . .
S PS Area sown in food crops/area sown in crops
plantation industry
Livestock structure AS Livestock production 'Value‘e /total agriFulture, forestry, livestock
and fisheries production value
(Primary school x 6 + Junior high school x 9 + Middle/High
National Level of rural human capital EDU school x 12 + College and above x 16)/Population over 6 years
of age
Financial support FSA Local financial resources for agriculture/total annual local
for agriculture financial expenditures
Level of agricultural AP Ratio of agricultural production price index to agricultural
price incentives means of production price index
Agro-industrial AA Provincial share of gross agricultural output/national share of
agglomeration gross agricultural output
Meteorological disaster CD Crops affected /total sown area
Level of farmers’ income INC Per capita net income of farmers with constant prices
Internal structure of the CPs Area sown to wheat or corn or soybean/area sown to
food-growing industry grain crops
Livestock structure AS Livestock production 'Valu(‘e /total agrifzulture, forestry, livestock
and fisheries production value
(Primary school x 6 + Junior high school x 9 + Middle/High
Wheat or corn or Level of rural human capital EDU school x 12 + College and above x 16)/Population over 6 years
soybean production of age
Financial support FSA Local financial resources for agriculture/total annual local
for agriculture financial expenditures
Level of agricultural AP Ratio of agricultural production price index to agricultural
price incentives means of production price index
Ratio of machinery inputs MD Machinery input costs /(labor input costs + machinery
input costs)
meteorological disaster CD Crops affected /total sown area

The data required for the calculations are primarily sourced from publications such
as the China Statistical Yearbook, China Rural Statistical Yearbook, China Energy Statis-
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tical Yearbook, various regional statistical yearbooks, and the Compilation of National
Agricultural Cost and Income Data.

3.2.2. Analysis of Factors Affecting Overall Agricultural Energy Efficiency in China

Previously, the spatial correlation of China’s agricultural energy efficiency was ex-
amined, revealing a correlation among the agricultural energy efficiency of each province.
The Spatial Durbin model is employed to analyze and decompose the influencing factors
affecting China’s overall agricultural energy efficiency, as well as the energy efficiency
of wheat-producing, corn-producing, and soybean-producing areas. Specific results are
shown in Table 5.

Table 5. Decomposition of spatial effects of factors affecting agricultural energy efficiency in China.

Variable Total Effect Direct Effect Indirect Effect
InINC 1.083 *** 0.197 *** 0.886 ***
PS —0.634 * 0.118 —0.752 **
AS 1.321* —0.477 *** 1.798 **
EDU 0.358 *** —0.032 ** 0.390 ***
AA —0.225 —0.236 *** 0.011
FSA —1.522 0.915 *** —2.437*
AP 0.580 ** —-0.011 0.590 **
CD 0.268 * 0.008 0.260
Rho —0.435 **

Note: ***, **, and *, respectively, represent significance at the 1%, 5%, and 10% levels. The same applies to the table
below (Table 6).

In Table 5, rho is —0.435 and significant at the 5% level, suggesting a notable spillover
effect on agricultural energy efficiency in China. The improvement in agricultural energy
efficiency within a province is not solely determined by the economic activities within that
province but is also influenced by the economic advancements in neighboring regions.

The positive and significant direct, indirect, and overall effects of farmers’ income
levels on agricultural energy efficiency from 2000 to 2022 show that an increase in farmers’
incomes directly affected agricultural energy efficiency, allowing them to invest in more
sophisticated agricultural equipment and technologies, which increased productivity and
decreased energy waste. At the same time, the increase in farmers’ incomes also fueled
the diffusion of technologies and improvements in production methods in nearby areas,
resulting in positive external effects that further increased the region’s overall agricultural
energy efficiency.

Both directly and indirectly, the internal organization of the plantation has a major
detrimental influence on agricultural energy efficiency. This indicates that alterations
to plantation layout typically lead to a reduction in agricultural energy efficiency. An
increase in the area under food crops may lead to standardization of agricultural produc-
tion methods and wasteful energy consumption, ultimately reducing energy efficiency
in agriculture.

Although the direct effect is notably negative, the indirect effect is significantly pos-
itive. This means that, even though the growth of the livestock industry may result in
higher energy consumption in the short term, an increase in the sector’s share of output
value eventually encourages technological innovation and agricultural production diversi-
fication, which in turn improves energy utilization efficiency. Additionally, technological
advancements and production method optimization within the livestock sector have cre-
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ated spillover effects that facilitate transformation and improvements in energy efficiency
in other agricultural sectors.

Table 6. Spatial decomposition of factors influencing energy efficiency in wheat, corn, and
soybean production.

Variable Wheat Production Corn Production Soybea}n
Production
InNINC 0.095 —0.480 ** 0.930 *
CPS 1.359 * 0.306 ** 0515
AS 0.268 0.335 —1.598 **
EDU 0.063 0.080 0.234
Total effect MD 0.958 ** 0.023 —0.922%
FSA 4251 * 2.507 ** 6.920 ***
AP —1.253 % —0.021 —0.441 *
CcD 0.131 ~0.156 ** —0.416 **
InINC 0.359 * ~0.088 —0.184
CPS 0.971 *** 0.018 —0416
AS 0.268 —0.382 % ~0.394
, EDU ~0.001 ~0.018 —0.061
Direct effect MD 0.156 ~0.033 ~0.082
FSA —0.141 0.530 0.002
AP —0.353 *** 0.042 —0.210**
CD 0.032 —0.180 *** —0.300 ***
InINC —0.264 —0.392 1114 %
CPS 0.387 0.288 * 0.931
AS 1.590 ** 0.717 ** ~1.204
Indirect EDU 0.065 0.097* 0.316 *
effect MD 0.802 * 0.056 —0.840 %
FSA —4110** 1.977 % 6.919 ***
AP ~0.900 ** ~0.063 —0231
CD 0.099 0.024 —0.116
Rho —0.953 *** —1.622 *** —1.007 ***

Improving rural human capital plays a crucial role in improving overall agricultural
energy efficiency. The overall impact of rural human capital on agricultural energy ef-
ficiency has been significantly positive, but the direct effect has been notably negative,
while the indirect effect has been significantly positive. While improving rural education
may not result in immediate improvements in agricultural energy efficiency—and may
even cause labor to move to other industries—in the long run, increased education indi-
rectly contributes to better agricultural energy efficiency through the spread of knowledge,
improvements in agricultural technology, and the optimization of industrial structure.

Rural human capital levels have a significantly beneficial overall impact on agricultural
energy efficiency, although the direct influence is notably negative and the indirect effect is
significantly positive. These phenomena can be explained by the fact that improving rural
education may not have an immediate positive influence on agricultural energy efficiency
in the short term and may even have the opposite effect by redistributing labor to other
industries. However, when educated rural populations move across regions, they not
only bring management experience and cutting-edge technology to other provinces, but
they also encourage the sharing and exchange of resources, information, and technology,
which speeds up the spatial diffusion of technological innovations and indirectly improves
agricultural energy efficiency. In addition, farmers’ ability for creativity and receptivity is
greatly increased by education. This encourages interregional innovation exchanges and
technological cooperation by making it simpler for them to adopt new technologies and
refine them via practice. Lastly, education improves production, minimizes resource waste,
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and maximizes resource allocation. Therefore, over time, agricultural energy efficiency is
greatly increased by rural human capital levels.

While the direct effect is significantly negative, the total and indirect effects of agricul-
tural agglomeration on agricultural energy efficiency are negligible, indicating that an in-
crease in agricultural agglomeration may result in a short-term decrease in energy efficiency.
By increasing the share of agricultural output in some regions, agricultural agglomeration
may lead to excessive concentration of resources and intensification of production methods
in these regions, increasing energy consumption; though agglomeration may result in
scale effects, intensive production patterns are typically accompanied by higher energy
consumption, resulting in limited improvements in agricultural energy efficiency.

Financial support for agriculture has a significantly favorable direct effect and a
significantly negative indirect effect, but overall, the effect on agricultural energy efficiency
is not significant. This implies that while increasing agricultural funding can directly
encourage the improvement of agricultural energy efficiency, in certain places or regions,
the use of financial incentives might not have produced the desired outcomes, resulting in
a decrease in energy efficiency. Unfair funding distribution or the inability of certain inputs
to be successfully converted into energy efficiency gains could be the cause of negative
indirect effects.

The impact of the level of agricultural price incentives on agricultural energy efficiency
primarily occurs indirectly. Increased pricing incentives can boost farmers’ incentive to
produce, encourage better resource allocation and agricultural production process op-
timization, and ultimately improve energy efficiency. The non-significant direct effect
might be the result of the incentives’” delayed implementation; farmers may need some
time to modify their production patterns and implement energy-saving technologies after
accepting the price signals.

The positive total effect of meteorological hazards on agricultural energy efficiency
may be due to the fact that these events force agricultural producers to take additional
coping mechanisms to deal with unstable climatic conditions, such as investing more in
agricultural infrastructure, changing the cropping structure, or adopting more efficient
energy technologies.

3.2.3. Analysis of Factors Affecting Energy Efficiency in Wheat, Corn, and
Soybean Production

The spatial effects influencing the energy efficiency of wheat, corn, and soybean
production are shown in Table 6. While the level of agricultural price incentives may cause
farmers to over-rely on energy-intensive production methods, which would hinder wheat
energy efficiency, the efficiency of maize is negatively impacted by livestock structure,
which reflects the resource-intensive nature of the livestock sector, which raises the energy
demand for maize production.

In terms of direct effects, the optimization of farmers” income levels and agricultural
cropping structure significantly increased wheat energy efficiency because farmers had
more money to spend on efficient agricultural techniques and equipment, and cropping
structure adjustments helped to improve land use and reduce energy consumption.

In terms of indirect effects, while the positive impact of livestock structure on wheat
and maize suggests that it contributes to resource recycling, the positive impact of agri-
cultural support on maize and soybeans suggests that it contributes to the upgrading of
agricultural technologies and facilities, and the negative impact on wheat may be due to the
failure of financial support to promote the transformation of efficient production patterns.
The level of farmers’ income promotes soybean energy efficiency by improving production
technology, and the structure of agricultural cultivation and the level of rural human capital
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also enhance the energy efficiency of corn and soybean by optimizing resource allocation
and technology application.

4. Conclusions and Policy Implications

Considering the existence of undesired outputs, this study adopts the EBM model
to measure the overall agricultural energy efficiency, the redundancy of various inputs,
and the potential for energy saving in China from 2000 to 2022. It also analyzes the energy
efficiency of wheat, corn, and soybean production, and explores the spatial effects in depth,
leading to the following key conclusions.

Firstly, China’s agricultural energy efficiency varies significantly both within and
between regions. The eastern and northeastern regions’ energy efficiencies exhibit a more
constant trend, staying at roughly 0.85 and 0.7, respectively. Notably, the eastern region’s
energy efficiency ratings are continuously higher than the national average. The central
region, on the other hand, has more noticeable variations in agricultural energy efficiency.
Throughout the observed years, there was a fluctuating trend in both within-region differ-
ences and between-region energy efficiency which showed convergence. In addition, the
energy efficiency of major crops such as wheat, corn, and soybeans varies greatly in the
production process, with the average value of energy efficiency of corn and soybeans being
0.75, while that of wheat is only 0.59.

Secondly, China has the largest land redundancy rate at 20.79%, and lower labor
and capital redundancy rates at 6.09% and 3.19%, respectively. In the meantime, there
are notable regional differences in China’s redundancy levels, with the east having the
lowest land redundancy rate, the center having the lowest capital redundancy rate, and
the northeast having the lowest rate of labor redundancy. In terms of energy redundancy,
with an average energy-saving potential of 400,000 tons between 2000 and 2022, China’s
agriculture as a whole has a tendency of first declining and then increasing.

Lastly, spatial correlation is seen in China’s agricultural energy efficiency. In particular,
the eastern and surrounding regions have higher energy efficiency, whereas the northern
and northeastern regions have poorer energy efficiency. Additionally, it is interesting that
China’s agricultural energy efficiency has a regional spillover effect, with various causes
affecting different regions and production areas. Farmers’ income wealth, the level of
rural human capital, and the level of incentives for agricultural prices are favorable for
improving agricultural energy efficiency, while the internal structure of the plantation is
unfavorable for improving energy efficiency.

Finally, the article offers the following suggestions in light of the aforementioned findings.

Firstly, in order to promote regional development, regional policies must be tailored to
local circumstances. Through innovation in agricultural technology, the east, an area with
high agricultural energy efficiency, might advance green agriculture. Given the low level of
mechanization in the west, land preparation and infrastructural development should be
prioritized. Specifically, the west can rely on the terrain to strengthen the construction of
water conservancy infrastructure, such as farmland construction, low-pressure irrigation
and other infrastructure, and at the same time should strengthen the transportation and
communication and other modern facilities to continue to improve and reduce the difficulty
of agricultural technology implementation. However, in areas such as Gansu and Shaanxi,
where the Yellow River Basin and the Qinling Mountains are mainly protected by ecological
functions, a balance between protection and development should still be struck, and
ecological agriculture should be actively developed.

Secondly, to maximize the movement and distribution of agricultural production
factors, cross-regional collaboration and exchanges have to be encouraged. China should
investigate the creation of a regional coordinating structure, fully utilize local governments’
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administrative authority, and remove institutional obstacles that prevent the movement of
labor, science, technology, and other production inputs across regional borders. Technical
and management extension services ought to be offered in the eastern and northeastern
regions. Provinces should actively develop and introduce professional and technical
abilities, improve close collaboration in agricultural production, and learn from adjacent
provinces about effective management practices and cutting-edge technology.

Thirdly, the internal structure of the plantation sector will impede the expansion of
agricultural energy efficiency, while farmers’ income, education, and price incentives for
agricultural products would encourage it. By offering market-based price incentives and
enhancing price support for agricultural products, provinces should boost agricultural
education and training, enhance farmers’ technical literacy, environmental awareness, and
management abilities, increase their income levels, and motivate them to boost production.
At the same time, it is critical to concentrate on reforming the planting business, accounting
for energy use as scale increases, and avoiding “diseconomies of scale” that would reduce
energy efficiency. For major crops such as wheat, corn, and soybeans, differentiated
policies should be adopted, focusing on improving the agricultural energy efficiency and
mechanization level of wheat, improving the financial support for soybeans and corn, and
increasing the planting scale of wheat and corn, so as to improve the agricultural energy
efficiency of China’s major agricultural products.

The limitation of this study is that only carbon emission is used as a non-desired output
indicator, and other factors of agricultural surface pollution, such as soil pollution, are not
included. Meanwhile, although the provinces showed some technological homogeneity in
terms of factor inputs and policy objectives, the results of the study revealed significant
differences among the provinces. Future studies could further categorize the provinces
through cluster analysis and calculate their agricultural energy efficiency separately or
adopt a multi-stage DEA approach to enhance the rigor and accuracy of the findings.
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Appendix A

Table Al. Agricultural energy conversion factors for standard coal [1].

Direct Energy Discount Factor for Indirect Energy Discount Factor for
Category Standard Coal Category Standard Coal
Raw coal 0.7143 kgce /kg Fertilizers 0.8956 kgce/kg

Diesel fuel 1.4571 kgce/kg Agrochemical 5.18 kgce/kg
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Table Al. Cont.

Direct Energy Discount Factor for Indirect Energy Discount Factor for
Category Standard Coal Category Standard Coal
Diesel 1.4714 kgce/kg Agro-film 4.9341 kgce/kg
Electrical power 0.1229 kgce/kw-h

Note [1]: The discounted standard coal coefficients for the direct energy category are derived from the General
Rules for Calculating Comprehensive Energy Consumption (GB/T2589-2008) [44], and the discounted standard
coal coefficients for the indirect energy category are derived from the Oak Ridge National Laboratory of the U.S.A.
and Intergovernmental Panel on Climate Change (IPCC).

Table A2. Study region.

Study Region Specific Provinces

Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang,
Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan,
Guangdong, Guangxi, Hainan, Chongging, Sichuan, Guizhou, Yunnan, Shaanxi,
Gansu, Qinghai, Ningxia, Xinjiang

Nationwide (30 provinces)

Hebei, Shanxi, Inner Mongolia, Heilongjiang, Jiangsu, Anhui, Shandong, Henan,

Wheat production region (14 provinces) Hubei, Sichuan, Shaanxi, Gansu, Ningxia, Xinjiang

Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Jiangsu, Anhui,
Corn production region (20 provinces) Shandong, Henan, Hubei, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi,
Gansu, Ningxia, Xinjiang

Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Anhui, Shandong,

Soybean production region (11 provinces) Henan, Chongqing, Shaanxi

Table A3. Analysis of input redundancy in agricultural energy efficiency of China’s four major regions.

Region. RaStli?)C(li/) 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 Average
o

Labor 1440 1126 1134 935 510 6.53 5.01 2.94 1.71 191 117 423 6.09
Land 18.12 1911 2345 2515 2111 1872 1990 1598 1747 2017 1546 34.2 20.79

National

Capital 982 840 850 440 138 046 0.28 0.08 049 0.63 0.60 7.99 3.19

Energy 2034 1519 1263 995 555 2.89 5.05 5.77 778 9.08 11.68 15.38 9.72

Labor 559 054 094 109 152 153 0.70 0.62 036 0.00 0.00 0.00 0.95

Fast Land 309 546 6.18 1120 10.53 5.86 6.81 12.18 11.37 1554 11.66 20.82 9.88
Capital 1886 9.19 7.88 247 202 137 0.83 0.00 113 152 144 19.06 4.88

Energy 2188 1373 987 927 327 1.89 1.54 127 261 274 328 20.62 6.84

Labor 2482 21.17 18.07 1130 411 3.25 0.00 0.35 1.88 2.07 000 0.00 7.03
Middle Land 2640 2490 28.14 2513 19.07 23.65 1735 1742 2325 2881 952 3820 24.62
Capital 0.08 056 260 207 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.32

Energy  20.64 1518 1028 6.10 219 137 1.85 1.73  11.06 1317 1529 9.11 8.95
Labor 20.64 18.67 2022 1835 1030 14.64 13.01 7.27 332 407 318 1154 1190
West Land 2537 2511 3197 3314 2479 2158 2674 1828 1395 20.04 16.65 4123 25.16

Capital 426 773 1098 8.63 192  0.00 0.00 0.21 032 033 033 438 2.95

Energy 15.67 1243 1231 999 799 324 8.36 1245 9.84 1346 1596 14.53 11.34

Labor 0.00 0.00 000 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

North Land 2510 31.06 4041 4243 4695 4119 4351 1737 3916 1878 35.61 45.03 33.48
east Capital 1956 2392 1325 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.17
Energy 3177 3023 2772 1972 1090 798  10.95 436 1092 6.02 16.76 13.62 14.95
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