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Abstract

In this paper, we introduce the concept of Exponential Variance Gamma (EVG) model to the valuation of convertible bond (CB).
Rather than evaluating derivatives with standard Black–Scholes approach, we describe the dynamic underlying asset log price with
VG process, which is one of classical Lévy processes with non-normal distribution but skewness and leptokurtosis. For numerical
purpose, we develop a discrete scheme with stability and convergence, which combines so-called multi-stage compound-option
model (MCO) and explicit–implicit difference method (EXIM) to discretize the partial integro-differential equation (PIDE). By
comparing our results with Black–Scholes approach, we can show that because of the ability to capture skewness and leptokurtosis
features, the new approach does provide a lower price for the valuation of CB.
c⃝ 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Convertible bond (CB) is a contingent claim providing investors a right, in which investors can choose to convert
the bond into a predetermined number of stocks with a pre-specified price, or to hold the bond till maturity to receive
coupons and the principal.

It is difficult to price CB because it cannot be simply considered as a combination of equity and bonds. Its price
depends on several variables such as underlying stock price, interest rate, credit risk and interaction between these
components. Moreover some special types of convertible bonds with sophisticated features such as call clause require
more flexible valuation models.

Theoretical research on convertible bond pricing can be divided into three approaches. First approach prices CB
depending on the firm value, which is initiated by [16] and extended by [4,5], see also in [20] and [6]. The factors such
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as volatility and firm value in these methods are unobservable. The second approach assumes the stock price as the
underlying state variables to price the CB. In [19], they develop a pricing model based on a finite difference method
with the stock price as stochastic variable. [14] extends the work by introducing Ho–Lee interest rate model [13].
The third approach prices CB by extending the former models with credit risk variable. [7]incorporates the reduced-
form [10] credit-risk model into CB pricing framework and uses a trinomial tree to find the numerical results. Similar
credit-risk approaches are followed by [3,15,22].

In those papers above, they all focus on describing the firm value or underlying stock price by Geometric
Brownian motion as Black–Scholes model. As is known to all, the probability distribution of empirical log returns
of contingent claims presents the characteristics of skewness and leptokurtosis (high peaks and heavy tail). But
the normal distribution cannot capture these features, and produces a so-called volatility skew or smile in option
pricing model. By introducing extra parameters, Variance Gamma (VG) process has a number of good mathematical
properties and has been proven to explain a number of economic findings. Mathematically, the distributions have
nice properties such as skewness and leptokurtosis and fat tails. Economically, [17] shows that VG process is able
to explain the well documented biases “volatility smile” in equity options. As a result, [8,23,25] introduced the VG
process into portfolio optimization, permanent convertible bonds pricing or interest rate swap pricing respectively.

In this paper, we introduce the Exponential VG process into the American-style CB pricing framework and
establish the partial integro-differential equation (PIDE) model. For numerical calculation, we incorporate the so-
called multi-stage compound-option (MCO) model1 and explicit–implicit difference method. By comparing the
results with the classical Black–Scholes approach, we find that the differences of CB prices and the differences of
optimal conversion prices between EVG model and GBM model are significant.

The outline of this paper is as follows. The Variance Gamma process and exponential VG model are summarized
in Section 2. In Section 3, we formulate the valuation of CB with EVG model and derive the corresponding PIDE.
Section 4 explains the discretization scheme for the PIDE. Numerical results with both EVG model and GBM model
are presented in Section 5. Section 6 concludes with a summary and comments on further research.

2. Exponential variance gamma model

The Variance Gamma (VG) process was first introduced in financial modeling by [18] to cope with the
shortcomings of Black–Scholes model. It provides a model (VG model) for log-return distribution that incorporates
both the leptokurtosis and skewness features.

2.1. The variance gamma process

The Variance Gamma process X = {X V G
t , t ≥ 0} with constant parameters σ > 0, ν > 0 and θ ∈ R, introduced

by [18], is a pure jump finite variation process with infinite activity. Its Lévy triplet is given by [γ, 0, νV G(dx)],where

νV G(dx) = k(x)dx (1)

k(x) =
e−λp x

νx
1{x>0} +

e−λn |x |

ν|x |
1{x<0} (2)

λp =

√
θ2

σ 4 +
2

σ 2ν
−

θ

σ 2 (3)

λn =

√
θ2

σ 4 +
2

σ 2ν
+

θ

σ 2 (4)

γ =
λp(e−λn − 1) − λn(e−λp − 1)

νλnλp
(5)

1 MCO model was initially proposed by [21] as a natural way to approximate the value of an American option with Black–Scholes model, see
also in [11]. A simple compound-option is an option on another option, and MCO is a series of sequentially ordered compound-options.
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The accumulate characteristic function of VG process, which is often called the characteristic exponent, satisfies
the following Lévy–Khintchine formula,

E[exp(iu X V G
t )] = exp(φ(u)t) (6)

φ(u) = iγ u +

∫
∞

−∞

(eiux
− 1 − iux1{|x |<1})k(x)(dx). (7)

Another way of defining a VG process is by treating it as (Gamma) time-changed Brownian motion with drift.
More precisely, let Γ (t; a, b) be a Gamma process with shape parameter a > 0 and scale parameter b > 0. Then
gν

t = Γ (t; 1, ν) is a special Gamma process with parameters a = 1 and b = ν; so the VG process X V G
t , with

parameters σ > 0, ν > 0 and θ , can alternatively be defined as

X V G
t = θgν

t + σ W (gν
t ) (8)

with characteristic function as

E[exp(iu X V G
t )] =

(
1

1 − iθνu + σ 2u2ν/2

)t/ν

. (9)

Of course, the two definition are equivalent. Similar to formula (A.5) , We can deduce that :∫
+∞

−∞

x1{|x |<1}k(x)(dx) = γ.

And from Lemma 4.1 in [24], we have∫
+∞

−∞

(eiux
− 1)k(x)(dx) =

1
ν

ln
λpλn

(λp − iu)(λn + iu)
.

As a result

φ(u) = iγ u +

∫
+∞

−∞

(eiux
− 1 − iux1{|x |<1})k(x)(dx)

= iγ u +

∫
+∞

−∞

(eiux
− 1)k(x)(dx) − iγ u

=
1
ν

ln
λpλn

(λp − iu)(λn + iu)
.

So we can easily deduce that the formula(6) and the formula(9) are equal to each other.
The VG process is a Markov process, its infinitesimal generator is an integro-differential operator defined by the

following expression for f ∈ C2
0 (R):

LV G f (x) = lim
t→0

E[ f (x + X V G
t )] − f (x)
t

= γ
∂ f
∂x

+

∫
[ f (x + y) − f (x) − y1{|y|<1}

∂ f
∂x

]k(y)dy. (10)

2.2. Exponential VG model and PIDE

Let {St |t ∈ [0, T ]} be the price of a financial asset modeled as a stochastic process on a filtered probability space
(Ω ,F ,Ft ,Q). We assume the stock price is modeled as the exponential of a VG process (EVG model) normalized
by its expectation, which is in form of (11).

St = S0 exp((m − q)t + X V G
t ) (11)

where q is the dividend rate.
Under the hypothesis of absence of arbitrage there exists a risk-neutral measure equivalent to Q under which

{e−(r−q)t St } is a martingale. We will assume therefore without loss of generality that Q is already a risk-neutral
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measure. Under this measure the VG risk neutral process for the stock price is given by (12):

St = S0 exp((r − q + ω)t + X V G
t ) (12)

where the normalization factor eωt ensures that E[St ] = S0e(r−q)t . It follows from the characteristic function evaluated
at −i that

ω =
1
ν

ln(1 − θν − σ 2ν/2).

Denote X t := (r − q + ω)t + X V G
t , the Lévy triple of X t is [γ ′, 0, νV G(dx)], where2

γ ′
= (r − q + ω) +

∫
∞

−∞

x1{|x |<1}k(x)dx . (13)

Thus, the infinitesimal generator under risk-neutral measure Q is,

L X ( f ) = (r − q + ω)
∂ f
∂x

+

∫
∞

−∞

( f (x + y) − f (x))k(y)dy. (14)

The value of a contingent claim with terminal payoff H (ST ) is defined as a discounted conditional expectation of its
terminal payoff under risk-neutral measure Q: Ut = E[e−r (T −t) H (ST )|Ft ]. From the Markov property, Ut = U (S, t)
where

U (S, t) = E[e−r (T −t) H (ST )|St = S]. (15)

Following from the Feynman–Kac formula for Lévy processes, we obtain

∂U
∂t

(S, t) + L SU (S, t) − rU (S, t) = 0 U (S, T ) = H (S) (16)

where L S has similar form to L X :

L SU (S, t) = (r − q + ω)S
∂U
∂S

(S, t) +

∫
∞

−∞

[U (Sey, t) − U (S, t)]k(y)(dy) (17)

3. Convertible bond pricing with VG model

A standard, plain-vanilla convertible bond is a bond that additionally offers the investor the option to exchange it for
a predetermined number of stocks during a certain, predefined period of time. In this paper, we consider an American-
style CB which can be converted into underlying stocks any time before and on the expiry date. Suppose that a CB
has K discrete coupon payments within its lifetime, as long as the CB is not converted. Let Tk(k = 1, 2, . . . , K )
denote the preset coupon delivery dates of the CB and Rk(k = 1, 2, . . . , K ) the coupon rate, by which the amount
of cash received by the holder of the CB at the time Tk is calculated. Denote the face value of CB as C while the
preset conversion price as P , which is assumed to be constant in the lifetime of CB. The conversion ratio I =

C
P as a

result.
As the price of CB is discontinuous on coupon date, we divide the lifetime of CB into K sub-intervals

[Tk−1, Tk](k = 1, 2, . . . , K ). Denote Uk(S, t) the CB price on the kth interval, thus the PIDE for the CB is as follows:

∂Uk

∂t
(S, t) + L SUk(S, t) − rUk(S, t) = 0 for t ∈ [Tk−1, Tk]. (18)

By making the change of variables x = log(St/S0) and τ = Tk − t , we present the formulation of (18) in the
logarithmic price.

Denote:

Vk(x, τ ) = Uk(S, t) (19)

∂Vk

∂x
(x, τ ) = S

∂Uk

∂S
(S, t) (20)

2 See Appendix A.



X. Yang et al. / Mathematics and Computers in Simulation 152 (2018) 35–50 39

∂Vk

∂τ
(x, τ ) = −

∂Uk

∂t
(S, t) (21)

Vk(x + y, τ ) = Uk(Sey, t) (22)

and the optimal logarithmic asset value at which the CB should be converted:

ck(τ ) = inf{x ∈ R|Vk(x, τ ) < I S0ex
} τ ∈ [0, Tk − Tk−1]. (23)

As a result, formula (18) should be reformulated with Vk(x, τ ) as:
∂Vk

∂τ
= LVk − r Vk τ ∈ [0, Tk − Tk−1], x ∈ (−∞, ck(τ )) (24)

with initial and boundary conditions3

Vk(x, 0) = Hk(x), for x ∈ R (25)

Vk(−∞, τ ) = e−rτ Hk(−∞), for τ ∈ [0, Tk − Tk−1] (26)

Vk(ck(τ ), τ ) = I S0 exp(ck(τ )), for τ ∈ [0, Tk − Tk−1] (27)

where

LVk = (r − q + ω)
∂Vk

∂x
+

∫
∞

−∞

[Vk(x + y, τ ) − Vk(x, τ )]k(y)dy,

Hk(x) =

⎧⎨⎩max(I S0ex , C(1 + Rk)) if k = K

max(I S0ex , Vk+1(x, Tk+1 − Tk) + C Rk) if k < K .

Two extra conditions on the solution must be imposed,4

∂Vk

∂τ
≥ LVk − r Vk, for τ ∈ [0, Tk − Tk−1], x ∈ (ck(τ ), ∞) (28)

Vk(x, τ ) ≥ I S0ex , for τ ∈ (0, Tk − Tk−1), x ∈ R. (29)

A variational inequalities form of (24)–(29) for American Option but with different initial and terminal conditions
can be found in [1]. In the next section, we apply the multi-stage compound-option model (MCO) to approximate the
American-style CB and calculate the constructed CB price step by step with explicit–implicit difference scheme.

4. Discretization scheme

Our goal here is to solve the free boundary problem (24)–(29) numerically. For a convertible bond on kth
interval, we consider M equal sub-intervals in τ -direction. To avoid dealing with infinite value of x , we choose
appropriate xmax sufficiently large but still finite that the CB holder choose to convert and xmin small enough that
the CB holder choose opponent. We divide x-direction into N equal sub-intervals, and obtain the following mesh on
[xmin, xmax] × [0, Tk − Tk−1]:

Dk = {(xi , τ j ) ∈ R+
× R+

|xi = (i − 1)∆x, i = 1, N + 1, τ j = ( j − 1)∆τ,

j = 1, M + 1,∆x = (xmax − xmin)/N ,∆τ = (Tk − Tk−1)/M}. (30)

A standard American-style CB can be converted into the underlying stocks anytime before and on the expiry
date. By limiting the early conversion privilege to occur only at a set of predetermined instants, a CB can be
modeled as a multi-stage compound-option (MCO). Without losing generality, we assume all the discrete dates
{τ j | j = 1, 2, . . . , M + 1} are the decision-making instants. Obviously, the value of the constructed CB converges

3 On each coupon delivery date, when the CB holder choose to convert or not, he will compare the conversion value against the coupon rate plus
with the CB value at the starting point for the next new stage.

4 Since Vk (x, τ ) = I S0ex
= Uk (S, t) = I S when x ∈ (ck (τ ), +∞). Substitute it into formula (17) and combined formula (A.5) we have

LVk (x, τ ) − r Vk (x, τ ) = LSUk (S, t) − rUk (S, t) = −q I S, and obviously ∂Vk (x,τ )
∂τ

= 0. So we can deduce formula (28) easily.
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to that of the American-style CB as N → ∞, and the holder can actually carry out the conversion right at any instant
prior to the expiry. Theoretically, without numerical errors, the MCO approach can give an approximation to the value
of CB with a conversion of American-style with any accuracy when N is sufficiently large. In simplicity, we write
Vi, j in short for the discrete values of V (xi , τ j ) on Dk , then Vi, j satisfies following PIDE

∂V
∂τ

= LV − r V, x ∈ [xmin, xmax] (31)

with boundary conditions5:

V (xmin, τ j ) = e−r∆τ V (xmin, τ j−1) (32)

V (xmax, τ j ) = I S0 exp(xmax). (33)

We discrete the PIDE by Explicit–Implicit difference method (EXIM). The idea of the method is to consider one
part of the integral term implicitly and the remaining explicitly. The implicit part will make sure the scheme requires
only a few time-steps. [12] proves that the following explicit–implicit time stepping scheme have consistency, stability
and convergence properties, which treats the integral part in an explicit time stepping in order to avoid the inversion
of the dense matrix J :

V j+1
− V j

∆τ
= DV j+1

+ J V j (34)

where

DV = (r − q + ω)Vx − r V (35)

J V =

∫
∞

−∞

[V (x + y, τ ) − V (x, τ )]k(y)dy. (36)

There are various approaches to evaluating the integral part J Vi, j . In this paper, we apply the method of [12] and
obtain the approximation in our convertible bond case as shown in Appendix B, where

J Vi, j = A(i, :) × V (:, τ j ) + Bi f or i = 2 : N . (37)

Using the first order finite difference approximation for Vτ and central difference for Vx , we obtain the following
EXIM form equation at point (xi , τ j+1)

Vi, j+1 − Vi, j

∆τ
= (r − q + ω)

Vi+1, j+1 − Vi−1, j+1

2∆x
(38)

− r Vi, j+1 + A(i, :)V (:, τ j ) + Bi f or i = 2 : N .

Thus,

(r − q + ω)∆τ

2∆x
Vi−1, j+1 + (1 + r∆τ )Vi, j+1 −

(r − q + ω)∆τ

2∆x
Vi+1, j+1

= Vi, j + ∆τ A(i, :) × V (:, τ j ) + ∆τ Bi f or i = 2 : N (39)

For multiple x-direction, we can simply write it as,

V2:N , j+1 = C−1 (V2:N , j + ∆τ A{2:N ,:} × V:, j + ∆τ B2:N
)

= C−1G (40)

where

G = V2:N , j + ∆τ A{2:N ,:} × V:, j + ∆τ B2:N

5 Note that the assumption is that the discrete value Vi, j at time τ j are known and we are solving for Vi, j+1 at time τ j+1.
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and

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b −a 0 0 . . . 0 0 0 . . . 0 0 0
0 a b −a . . . 0 0 0 . . . 0 0 0
.

.

.

0 0 0 0 . . . a b −a . . . 0 0 0
.

.

.

0 0 0 a . . . 0 0 0 . . . a b −a
0 0 0 a . . . 0 0 0 . . . 0 a b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(N−1)×(N−1)

(41)

a =
(r − q + ω)∆τ

2∆x
, b = 1 + r∆τ. (42)

Of course, the boundary condition of formula (32) and (33) should also be considered, they will influence the
first and last elements of G in formula (40). So in simulation, we should add the first and last elements of G by
−a ∗ Vk(xmin, τ j+1) and a ∗ Vk(xmax , τ j+1) respectively.

By comparison with conversion value I S0exi , we obtain values for all Vi, j+1 and optimal asset price at which the
CB should be converted at time τ j+1.

All in all, we summarize our numerical algorithm as follows:
Step 1: Backward calculation. For each k = K , K − 1, . . . , 1

(1) Set j = 1 (that is τ j = 0), calculate Vk(x, τ j ) = Hk(x) for every x .
(2) For each j = 1, 2, 3, . . . , M

(a) Calculate the boundary conditions:Vk(xmin, τ j+1) = e−r∆τ Vk(xmin, τ j ) and Vk(xmax , τ j+1) = I S0

exp(xmax );
(b) Calculate G = Vk(x2:N , τ j ) +∆τ A{2:N ,:} × Vk(x1:N+1, τ j ) +∆τ B2:N and add the first line and the last line

of column vector G by −a ∗ Vk(xmin, τ j+1) and a ∗ Vk(xmax , τ j+1) respectively;
(c) Calculate Vk(x2:N , τ j+1) = C−1G;
(d) Set Vk(x2:N , τ j+1) = max

(
Vk(x2:N , τ j+1), I S0ex2:N

)
.

Step 2: Choose V1(x = ln(S0), τ = T1) as the initial value of the CB price. Choose the smallest x when
Vk(x, τ j ) = I S0exp(x) as the optimal logarithmic asset value at every time step τ j .

5. Numerical example

The example with application of our new model is a 5-year CB with coupon payments at the end of each year.
We assume the par C = 100, constant conversion price K = 10 and the coupon rate are set to be r1 = 2%, r2 =

2.5%, r3 = 3%, r4 = 3.5%, r5 = 4%. Furthermore, let us also assume that the risk-free interest rate remains a constant
for 5 years at 5%, the dynamics of underlying stock price satisfies an exponential VG process as Eq. (12) with initial
price S0 = 10, dividend rate q = 0.01 and VG parameters σ = 0.1787, ν = 0.1332, θ = −0.3065.6

We first show some convergence results of our discretization scheme. In Figs. 1 and 2, we show the results when
separating the τ -direction and x-direction respectively. As shown in Fig. 1, the CB price moves upward when we fix
N = 4000 and let the M increase from 800 to 1000, 2000. This is in accordance with the MCO model. Differently,
the CB price shown in Fig. 2 moves downward when we fix M = 1000 and let the interval number of x range from
1000 to 2000, 4000. It is because from any line in Fig. 1 or Fig. 2 we can conclude that the CB price is a concave
function on the underlying stock price, so the EXIM methods (linear interpretation in J operator approximation) will
overestimate the CB price. When we fix the time interval, and increase N, it will make the CB price move downwards
to the true value.

6 In real world, we can estimate all VG parameters with Moment Estimation method same as J. Yu et al. (2009) [25].
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Fig. 1. Price of CB under EVG model for N = 4000.

Fig. 2. Price of CB under EVG model for M = 1000.

Figs. 3 and 4 show the CB price and optimal conversion price (OCP) respectively when we increase both of the N
and M .7 There are two parts in Fig. 4, the left part shows the whole picture of OCP, and the right part zooms the left
part when the upper limit of y-axis (that is the largest stock price) is set to be equal to 150. You will find Figs. 5 and
8 are both zoomed similar as Fig. 4. We can find that both of the CB prices in Fig. 3 and optimal conversion price in
Fig. 4 convergent quickly. As shown in Table 1, the calculation time for different discretization is O(M N 2) (except
the first line8), which has been proved in [9].

For comparison purpose, we also price the convertible bond under Geometric Brownian Motion (GBM)
assumption. To ensure the same statistical expectation and variance of the log returns of underlying stock price for both
EVG and GBM models, we assume St = S0 exp ((µ − q)t + σwW (t)) for GBM approach in numerical calculation,
where µ = m + θ and σw =

√
θ2ν + σ 2.

7 For reasons of space, only a ratio of N : M = 2 : 1 is shown.
8 There exists a fix time consumption for every simulation, it will influence much more when the total simulation time is small relatively. So

time consumption rule of O(M N 2) is not obviously when N and M are relatively small.
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Table 1
Calculation time for CB pricing with different discretization in case of
q = 0.01 (Pentium IV, 2.66 GHz).

N M Time (s)

400 200 2.001871
800 400 8.373386
1000 500 14.862343
2000 1000 92.516224
4000 2000 640.736400

Fig. 3. Price of CB under EVG model for different discretization numbers.

Fig. 4. OCP of CB under EVG model for different discretization numbers.

Based on GBM model, the convertible bond value satisfies following PDE, which can be calculated similarly by
EXIM difference method.

∂V
∂τ

=
σ 2

w

2
∂2V
∂x2 + (r − q)

∂V
∂x

− r V . (43)
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Fig. 5. Comparison of OCP under both EVG and GBM models (q = 0.01, N = 4000, M = 2000).

Fig. 6. Comparison of CB price under both EVG and GBM models (q = 0.01, N = 4000, M = 2000).

Figs. 5 and 6 respectively show the OCP and CB price for both GBM model and EVG model with parameters
q = 0.01, N = 4000, M = 2000. From the left part in Fig. 5, we can find that the OCP in GBM model is a constant
equal to 10×e10

≈ 2.2026×105, which is the maximum boundary of the stock price in simulation.9 It means that the
CB holder will never execute the conversion option until the maturity in GBM model. However, from the right part
in Fig. 5.10 We can find it is possible for the CB holder to convert it before the maturity in EVG model. One should
also observe that when the time is closer to coupon delivery date, the OCP shoot the sky rapidly in EVG case, which
is coincident with the result of [2].

From Fig. 6, we find that the CB price in GBM model is higher than that in EVG case especially when the
underlying stock price becomes large. The differences can be substantial, for example, when the stock price is about
20.04, the CB price under the EVG model is about 10% lower than that under the GBM model.

Table 2 compares the CB price based on the two models in different q and initial stock prices. It shows that the
difference between these two models increase when the initial stock price increases and decrease when the dividend
rate q increases.

9 In simulation, we set the upper boundary of the stock yield return as 10 and set the initial stock price equal to 10.
10 Because the OCP in GMB model is out of the scope of the y-axis, so there are no real line to indicate the OCP under GBM model.
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Fig. 7. Comparison of CB price under EVG model with different q .

Table 2
CB price comparison between EVG model and GBM model with different dividend rates and different discretization when N = 4000, M = 2000
(Pentium IV, 2.66 GHz).

q Model S0 = 4.99 S0 = 10 S0 = 20.04 S0 = 39.95 S0 = 80.04

0
EVG 92.53 118.53 210.93 409.41 810.64
GBM 94.41 127.86 233.88 456.06 904.17

0.005
EVG 92.30 116.83 206.92 401.51 800.45
GBM 94.03 125.62 228.40 445.04 882.08

0.01
EVG 92.09 115.26 203.13 399.48 800.45
GBM 93.67 123.47 223.07 434.29 860.54

0.03
EVG 91.47 109.98 200.37 399.48 800.45
GBM 92.57 116.14 204.52 399.48 800.45

At last, we give the numerical results on sensitivity of parameter q. As shown in Fig. 7, when the dividend rate
varies from 0, 0.005, 0.01 to 0.03, the CB price decreases because we assume the consistent convert price.11 We
also observe that the optimal conversion price in Fig. 8 is higher when the dividend rate is lower and it approaches to
infinity when q = 0, which is coincident with the American option case.

6. Conclusion and future work

We apply the Exponential Variance Gamma process into Convertible Bond pricing model. For numerical
calculation, we develop a discrete scheme, which combines MCO model and EXIM difference method.

A comparison revealed that the convertible bond prices under EVG model are lower than those under GBM model,
especially when the initial stock price is higher. That is because the EVG model can capture the skewness and
leptokurtosis features of the yield of stock price. The optimal conversion prices under the two models are significantly
different. The convertible bond will never execute the convert option till the end of the maturity. But it is possible for
the CB holder to convert it before the maturity in EVG model. We are led to conclude that even though the pricing of
CB under EVG model is more complicated than the previous GBM-based models, it is important from the perspective
of correctly accounting for the values of these instruments.

The methods developed here would be applicable to a wide class of convertible bonds pricing such as those with
call or put provisions, and reset clause etc. In future study, we should build more realistic models that can capture
many more features of convertible bond in reality.

11 If the conversion price changes with dividend rate, then it is same with the case q = 0.
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Fig. 8. Comparison of CB OCP under EVG model with different q .
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Appendix A. Proof of γ ′

Assume the Lévy triplet of X t := (r −q +ω)t + X V G
t is [γ ′, 0, νV G(dx)], thus we have its characteristic exponent:

φX (u) = iγ ′u +

∫
∞

−∞

(eiux
− 1 − iux1{|x |<1})k(x)dx . (A.1)

By no-arbitrage of St , E
(
e−(r−q)t St

)
= S0, equivalently, E(eX t ) = e(r−q)t , thus we obtain r − q = φX (−i), that is

γ ′
+

∫
∞

−∞

(ex
− 1 − x1{|x |<1})k(x)dx = r − q, (A.2)

equivalently

γ ′
= r − q −

∫
∞

−∞

(ex
− 1 − x1{|x |<1})k(x)dx . (A.3)

According to (A.5), we finish the proof thus obtain

γ ′
= r − q + ω +

∫
∞

−∞

x1{|x |<1}k(x)dx (A.4)

∫
∞

−∞

(ey
− 1)k(y)dy =

∫
∞

0
(e−y

− 1)k(−y)dy +

∫
∞

0
(ey

− 1)k(y)dy

= lim
ε→0

(∫
∞

ε

(e−y
− 1)

e−λn y

νy
dy +

∫
∞

ε

(ey
− 1)

e−λp y

νy
dy
)

= lim
ε→0

(∫
∞

ε

e−(λn+1)y

νy
dy −

∫
∞

ε

e−λn y

νy
dy +

∫
∞

ε

e−(λp−1)y

νy
dy −

∫
∞

ε

e−λp y

νy
dy
)
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= lim
ε→0

(
1
ν

E((λn + 1)ε) −
1
ν

E(λnε) +
1
ν

E((λp − 1)ε) −
1
ν

E(λpε)
)

= lim
ε→0

(
−

1
ν

∫ λn+1

λn

e−εy

νy
dy + −

1
ν

∫ λp

λp−1

e−εy

νy
dy

)

= −
1
ν

ln(
λn + 1

λn
) +

1
ν

ln(
λp

λp − 1
) =

1
ν

ln
(

λnλp

(λp − 1)(λn + 1)

)
=

1
ν

ln
(

2/(σ 2ν)
2/(σ 2ν) − 2θ/σ 2 − 1

)
= −

1
ν

ln(1 − θν − σ 2ν/2) = −ω. (A.5)

Appendix B. Approximation of J

As Lévy measure k(y) is singular at y = 0, we divide the domain of integration into six sub-intervals.∫
∞

−∞

[V (xi + y, τ j ) − Vi, j ]k(y)dy =

∫ x1−xi

−∞

[V (xi + y, τ j ) − Vi, j ]k(y)dy

+

∫
−∆x

x1−xi

[V (xi + y, τ j ) − Vi, j ]k(y)dy +

∫ 0

−∆x
[V (xi + y, τ j ) − Vi, j ]k(y)dy

+

∫ ∆x

0
[V (xi + y, τ j ) − Vi, j ]k(y)dy +

∫ xN+1−xi

∆x
[V (xi + y, τ j ) − Vi, j ]k(y)dy

+

∫
∞

xN+1−xi

[V (xi + y, τ j ) − Vi, j ]k(y)dy = I1 + I2 + I3 + I4 + I5 + I6. (B.1)

Notice that, for some special value of i(i = 1, 2, N , N + 1), some of these sub-integral parts equal to zero, thus we
have

J V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1
1 0 1 0 0 0
1 1 1 1 1 1

. . . . . .

1 1 1 1 1 1
1 1 1 1 0 1
1 1 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(N+1)×6

×

⎛⎜⎜⎜⎜⎜⎜⎝
I1
I2
I3
I4
I5
I6

.

⎞⎟⎟⎟⎟⎟⎟⎠ (B.2)

B.1. Approximation of I1

For y ∈ (−∞, x1 − xi ), we have xi + y < x1 = xmin, thus V (xi + y, τ j ) = V1, j ,

I1 =

∫ x1−xi

−∞

(V1, j − Vi, j )k(y)dy = (V1, j − Vi, j )
∫

∞

(i−1)∆x

e−λn y

νy
dy

=
1
ν

E ((i − 1)∆xλn) V1, j −
1
ν

E ((i − 1)∆xλn) Vi, j (B.3)

where, for any x > 0, E(x) =
∫

∞

x
e−y

y dy. Specifically, if i = 1, I1=0.

B.2. Approximation of I2

I2 =

∫ (i−1)∆x

∆x
[V (xi − y, τ j ) − Vi, j ]k(−y)dy =

i−2∑
k=1

∫ (k+1)∆x

k∆x
[V (xi − y, τ j ) − Vi, j ]

e−λn y

νy
dy
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For y ∈ (k∆x, (k + 1)∆x), we have

V (xi − y, τ j ) ≈
V (xi − (k + 1)∆x, τ j ) − V (xi − k∆x, τ j )

∆x
(y − k∆x)

+V (xi − k∆x, τ j ) =
Vi−k−1, j − Vi−k, j

∆x
(y − k∆x) + Vi−k, j

and

I2 =
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k=1

∫ (k+1)∆x

k∆x
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dy
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dy

+

i−2∑
k=1
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1
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=
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1
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+

i−2∑
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ν∆xλn
(e−λnk∆x − e−λn (k+1)∆x )

=
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(
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ν
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1
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−
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1
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(E(k∆xλn) − E((k + 1)∆xλn)) Vi, j

+
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k=1

(−
k
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(E(k∆xλn) − E((k + 1)∆xλn)) +
1

ν∆xλn
(e−λnk∆x

− e−λn (k+1)∆x ))Vi−k−1, j .

B.3. Approximation of I3, I4

For y ∈ (0,∆x), we have V (xi − y, τ j ) − V (xi , τ j ) ≈ (Vi−1, j − Vi, j )/∆x , and V (xi + y, τ j ) − V (xi , τ j ) ≈

(Vi+1, j − Vi, j )/∆x , thus

I3 =

∫ ∆x

0

Vi−1, j − Vi, j

∆x
e−λn y

ν
dy =

1
ν∆xλn

(1 − e−λn∆x )(Vi−1, j − Vi, j )

I4 =

∫ ∆x

0

Vi+1, j − Vi, j

∆x
e−λp y

ν
dy =

1
ν∆xλp

(1 − e−λp∆x )(Vi+1, j − Vi, j ).

B.4. Approximation of I5

I5 =

∫ (N−i+1)∆x

∆x
[V (xi + y, τ j ) − Vi, j ]k(y)dy =

N−i∑
k=1

∫ (k+1)∆x

k∆x
[V (xi + y, τ j ) − Vi, j ]

e−λp y

νy
dy

For y ∈ (k∆x, (k + 1)∆x), we have

V (xi + y, τ j ) ≈
V (xi + (k + 1)∆x, τ j ) − V (xi + k∆x, τ j )

∆x
(y − k∆x)

+ V (xi + k∆x, τ j ) = Vi+k, j +
Vi+k+1, j − Vi+k, j

∆x
(y − k∆x)
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I5 =

N−i∑
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=
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B.5. Approximation of I6

For y ∈ ((N + 1 − i)∆x, ∞), we have V (xi + y, τ j ) = I S0exi +y , thus

I6 = I S0exi

∫
∞

(N+1−i)∆x

e−(λp−1)y

νy
dy − Vi, j

∫
∞
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= −
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I S0exi E((N + 1 − i)(λp − 1)∆x).

Specifically, if i = N + 1,

I6 =

∫
∞

0
(I S0exi +y

− I S0exi )dy

= I S0exN+1 lim
ε→0

∫
∞

ε

(ey
− 1)dy = I S0exN+1

1
ν

log
λp

λp − 1
.

B.6. Approximation of J Vi, j

Notice that I1 − I6 are linear functions of V (:, j) with coefficients which independent to j but determined by
the discretization of x-direction and Lévy triplet of VG process. Thus we denote the same coefficient matrix A :=

Ak(k = 1, . . . , K ) for each conversion stage and obtain the approximation form of integral part as

J Vk(:, j) = A × Vk(:, j) + B, (B.4)

where A can be easily obtained by a straightforward algebraic calculations from (B.2) and approximations of the six
sub-integrals, and

Bi =

⎧⎪⎪⎨⎪⎪⎩
I S0exi E((N + 1 − i)(λp − 1)∆x)/ν if i < N + 1

I S0exi
1
ν

log
λp

λp − 1
if i = N + 1.
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